US009128894B2

a2z United States Patent (10) Patent No.: US 9,128,894 B2
De Santis et al. (45) Date of Patent: Sep. 8, 2015
(54) BUS CONTROLLER (52) U.S.CL
CPC GOG6F 13/1694 (2013.01); GO6F 13/16
(71) Applicant: MICRON TECHNOLOGY, INC., (2013.01); G1IC 16/10 (2013.01)
Boise, ID (US) (58) Field of Classification Search
CPC ... GO6F 13/16; GO6F 13/1694; G11C 16/10
(72) Inventors: Luca De Santis, Avezzano (IT); USPC e 711/154
Pasquale Conenna, Cittaducale (IT) See application file for complete search history.
(73) Assignee: Micron Technology, Inc., Boise, ID (56) References Cited
us)
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this 166250 A 21979 Mustha cf al
: : s s aetal.
%atselg llssixée%deg o adjusted under 35 4447873 A 5/1984 Price et al.
S.C. 154(b) by 0 days. 4,689,823 A * 8/1987 Wojcik etal. ...ccoovv....n... 382/276
4,785393 A * 11/1988 Chuetal. 712/221
(21) Appl. No.: 14/170,728 4,878,190 A * 10/1989 Darleyctal. 708/605
5,241,492 A * 8/1993 Girardeau, Jr. 708/523
(22) Filed: Feb. 3, 2014 5481736 A * 1/1996 Schwartz et al. 712/23
5,509,134 A 4/1996 Fandrich et al.
. o 5,544,356 A 8/1996 Robinson et al.
(65) Prior Publication Data 5379278 A 11/1996 McLaury
US 2014/0156904 A1l Jun. 5. 2014 5,603,001 A 2/1997 Sukegawa et al.
’ 5,655,132 A 8/1997 Watson
A 5,668,976 A 9/1997 Zook
Related U.S. Application Data 5,692,138 A 11/1997 Fandrich et al.
. .. 5,754,567 A 5/1998 Norman
(60) Division ofapplication No. 12/651.,82.7,ﬁ1ed on Jan. 4, 5761103 A * 6/1998 Oakland etal. ... 708/497
2010, now Pat. No. 8,667,232, which is a continuation 5,761,388 A 6/1998 Nomoto et al.
of application No. 11/489,778, filed on Jul. 20, 2006, 5,801,977 A 9/1998 Karp et al.
now Pat. No. 7,644,240, which is a division of 5,811,862 A . 9/1998 Okugaki et al.
application No. 10/722,110, filed on Nov. 25, 2003, 5.832,258 A % 11/1998 Kiuchiefal. oo 7121226
now Pat. No. 7,272,683. (Continued)
(30) Foreign Application Priority Data DPrimary Examiner — Sheng-.Jen Tsal. . .
(74) Attorney, Agent, or Firm — Dicke, Billig & Czaja,
Jul. 17,2003 (IT) wooooooeeeeeeeeece RM2003A0354 PLLC
(51) Int.Cl (57 ABSTRACT
GO6F 12/00 (2006.01) A bus controller has a displacer, an arithmetic logic unit
GO6F 13/00 (2006.01) coupled to the displacer, and a replacer selectively coupled to
GO6F 13/28 (2006.01) the displacer and the arithmetic logic unit.
GOGF 13/16 (2006.01)
GlIC 16/10 (2006.01) 20 Claims, 5 Drawing Sheets
/’l 42
602
NN 638
634
-
636 L
608
610,510 N e
PR [e
pispa| S0 | aw [614 —7 1 REPL.
7 CER 82 604 ACER
602 . 630 640
500 606 | 10 /N \ R
622) / 618 T
7] 626 7—/ 632
608/ 624 604

US 9,128,894 B2

Page 2
(56) References Cited 6,718,504 B1* 4/2004 Coombsetal. 714/755
6,735,661 B2 5/2004 Gelke et al.
U.S. PATENT DOCUMENTS 7,277,506 BL* 10/2007 Pope etal.cccccoeeeen. 375/341
7,941,651 Bl 5/2011 Toll et al.
5935240 A * 8/1999 Mennemeier et al. 712/225 2002/0052217 Al 5/2002 Fukuzumi
5937423 A 8/1999 Robinson 2002/0061606 Al 5/2002 Honma et al.
5,956,742 A 9/1999 Fandrich et al. 2002/0112149 Al 82002 Moyer
6.011.546 A 1/2000 Bertram 2002/0188820 Al 12/2002 Taruki
’ ’ 2003/0138098 Al* 7/2003 Cole ..coccoovvvvvieiivnieennns 380/28
6,038,635 A~ 372000 Ideta 2004/0008841 Al 1/2004 Aoki etal.
6,124,813 A 9/2000 Robertsonetal. 341/143
2004/0054875 Al* 3/2004 Segelkenc.......... 712/214
6,223,290 Bl 4/2001 Larsen et al.
6311299 Bl 1012001 Bunker 2008/0005454 Al 1/2008 Yada e_t al.
6:438:706 Bl /2002 Brown 2008/0320454 Al 12/2008 Suzuki et al.
6,490,197 Bl 12/2002 Fasoli * cited by examiner

US 9,128,894 B2

Sheet 1 of 5

Sep. 8, 2015

U.S. Patent

[0L w0
40SSID0Hd
ONVIINDD
SONVINNOD SN |]
o L
=51 \§
oLl aN3dSNS
0zl HITIOHINOD [7]
pLL Y
T19VININYHD0Yd ==
2909 /@_uéawv WY 2’ 55
AOWIN | 7dIN J INOd N9
/901YNY ~/ SH0IVALOV 7 nnY
/8Ll by

91l

€Ll

/

ool

US 9,128,894 B2

Sheet 2 of 5

Sep. 8, 2015

U.S. Patent

ON3dSNS ONVININOD IND
g -y
(19V) JIVAHIINI | 47 .
HITIOHINOD |-
Lzl |SNONOHHINASY
o0z N3dSns A vH
NERUN v N
B T oL a1 avols | st | veseud <] o)
> < < N1
NOISSIYdX3 NOLLONLSNI| [NOUONGISNI| NOULONGISNI| 3000 |~ mwmmumMmozEz%
1 991 2L vz f C sed < %907
(2d)
%0z B3INNOY | V6!
WVH90Hd
i 0€2 9€7
091 881 A\ A\
N Y L (NvS) (1vS)
(413s) (00d) |« XON | | 38Vl
43LSI93Y 3014430 $38S3Haav|~ [s3SSIHaaY
103138 ad ONILHVLS ONILHVLS
A
L 2wl N * ANVININDD 09V 291
(4L) (09) [=< Nzg| <
gE i O o [
7 Zel
J 8El gL |, | e \\\ GEL /qm_
(SHOLYNLIV) STYNDIS LNdLNO| /(8H) INVE HILSIDIH [~ STYNIIS LNdNI
_ _
Wpg| o€l lpel

US 9,128,894 B2

Sheet 3 of 5

Sep. 8, 2015

U.S. Patent

G “OLf°

< 1 s < H . . SNq 61 _
[@ | m | ad [nmH | 0Ly Ysewuqg 71y Ba 101 L ¥HI
4 ... n_ . a .. n__ 0l Ysewuqg 7l Bal 00l 0 YHD
- o o " spial gmuw_@@ uoissaidxa
y pjay Jas! me\ o
pel 90
uq sns
0 L€
P : LIVH |
82v=_| dON /m:éw
NdNFa | vz
Jnra | tlere
dnry | 0trve
g7y Ppe UInjal bal T1IV) /mgm
Bau TEN AL
zzv—| Bareamos & Toex |4 [Bau 106.e) X135 | tvbe
Blv oA SI] § Oy osewuas /|ziy bol 110|000 BNLTS | "1
v BnjeA 1q 91 [|ziw_pe 0l0_| 000 al3s | bve
T anfeA 11q 91 [|ziw ba 100, |- 000 138 1 bve
307 ppe dull 90y | Uoissaldxa 71 oo NdNE L Evve
S0y Jppe dull 90y | uoissaidxa / 100 dIAIr /NS\N
< Tz i 77 - ™
! ELY e

US 9,128,894 B2

Sheet 4 of 5

Sep. 8, 2015

U.S. Patent

9 “olf’
709 b29
269 KL 929 _\L
@ / @ 229
dolg
0£9 e \.
430y $09 779 —*
Td3 \ / oy /\ \\
%ﬂ
829 / X 1919019
809
9¢9
=
7 v€9
8¢9 /|/
209

nv

809

09

o
o
(Ie]

<EN)
“V1dSId

209

US 9,128,894 B2

Sheet 5 of 5

Sep. 8, 2015

U.S. Patent

2 Buf
13534 el
13534 13s34 _ N\
_ 121 1zl _ 700 NN
i / vLL AN =
aN3dsns aN3dSns aN3dSNS
aN3dSNS N\ /
/ P, 90L Lzl 1zl
1ZL 7 0LL
00

US 9,128,894 B2

1
BUS CONTROLLER

RELATED APPLICATIONS

This application is a Divisional of U.S. application Ser. No.
12/651,827, filed on Jan. 4, 2010, (allowed) entitled
“MEMORY DEVICE CONTROLLER,” which is a continu-
ation of U.S. patent application Ser. No. 11/489,778, filed Jul.
20, 2006 and issued as U.S. Pat. No. 7,644,240 on Jan. 5,
2010, which application is a divisional of U.S. patent appli-
cation Ser. No. 10/722,110 of the same title, filed Nov. 25,
2003 and issued as U.S. Pat. No. 7,272,683 on Sep. 18, 2007,
which application claims priority to Italian Patent Applica-
tion Serial No. RM2003A000354 of the same title and filed
on Jul. 17, 2003, all of which applications are commonly
assigned. The entire contents of U.S. application Ser. No.
12/651,827, U.S. patent application Ser. No. 11/489,778, and
U.S. patent application Ser. No. 10/722,110 are incorporated
herein by reference.

TECHNICAL FIELD OF THE INVENTION

The present invention relates generally to controllers and in
particular the present invention relates to memory device
controllers.

BACKGROUND OF THE INVENTION

A flash memory device is a type of electrically erasable
programmable read-only memory (EEPROM) and is used for
nonvolatile storage of data. Flash memory is being increas-
ingly used to store execution codes and data in portable elec-
tronic products, such as computer systems.

Flash memory devices are programmed and erased by
sequences of operations (or algorithms). A program algo-
rithm normally involves sequentially applying a program-
ming pulse and a program-verify pulse to a set of memory
cells ofa flash memory device. This is repeated until the set of
memory cells is programmed. An erase algorithm typically
comprises a pre-programming cycle, an erase cycle, and a soft
program cycle. The pre-programming cycle of the erase algo-
rithm puts each memory cell in a programmed state by apply-
ing a program pulse to each row of memory cells. The soft
program cycle or heal cycle corrects any over-erased memory
cells after the erase cycle has been completed by applying a
soft program pulse to the over-erased memory cells. This is
often referred to as compaction.

A control circuit (or algorithm controller) is used to man-
age the various steps of program and erase algorithms. For
one application, the algorithm controller executes a code
stored on the controller and interacts with hardware devices
of the flash memory device, such as memory cell address
counters, pulse counters, pulse duration counters, or the like,
that are external to the algorithm controller for causing the
hardware devices to perform various functions. Moreover, the
algorithm controller causes hardwired actuators of the
memory device that are external to the algorithm controller to
send actuator signals to analog voltage generators of the
memory device for controlling the voltage generators during
program, erase, or compaction operations. The actuator sig-
nals also configure switches and control program verify
operations. One problem with hardware devices and hard-
wired actuators is that many of them are of a fixed design for
aparticular application and cannot be readily reconfigured or
updated for other applications, thereby limiting versatility
and reusability of the flash memory device design.

w

20

25

40

45

50

55

2

For the reasons stated above, and for other reasons stated
below which will become apparent to those skilled in the art
upon reading and understanding the present specification,
there is a need in the art for alternative algorithm controllers
for memory devices, such as flash memory devices.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 11is ablock diagram of a memory system according to
an embodiment of the present invention.

FIG. 2 is a block diagram of a controller for a memory
device according to another embodiment of the present inven-
tion.

FIG. 3 illustrates register fields for a register of the con-
troller of FIG. 2 according to another embodiment of the
present invention.

FIG. 4 illustrates instructions for the controller of FIG. 2
according to another embodiment of the present invention.

FIG. 5 illustrates an expression of one or more of the
instructions of FIG. 4 according to another embodiment of the
present invention.

FIG. 6 is a block diagram of a bus controller according to
another embodiment of the present invention.

FIG. 7 is a block diagram of a suspension controller
according to another embodiment of the present invention.

DETAILED DESCRIPTION

In the following detailed description of the invention, ref-
erence is made to the accompanying drawings that form a part
hereof, and in which is shown, by way of illustration, specific
embodiments in which the invention may be practiced. In the
drawings, like numerals describe substantially similar com-
ponents throughout the several views. These embodiments
are described in sufficient detail to enable those skilled in the
art to practice the invention. Other embodiments may be
utilized and structural, logical, and electrical changes may be
made without departing from the scope of the present inven-
tion. The following detailed description is, therefore, not to be
taken in a limiting sense, and the scope of the present inven-
tion is defined only by the appended claims and equivalents
thereof.

FIG. 1 is a block diagram of a memory system 100, such as
a flash memory system, according to an embodiment of the
present invention. Memory system 100 includes a memory
device (or chip) 102, such as a nonvolatile or flash memory
device, coupled to a command processor 104 for controlling
basic operations of memory device 102. Memory device 102
includes a command user interface (CUI) 106 coupled to a
memory device controller (or algorithm controller or micro-
programmable controller (MPC)) 110 by control lines 112,
114, and 127. Micro-programmable controller 110 is coupled
to an analog/memory core 116 by control lines 118 and 120.
For one embodiment, analog/memory core 116 has an array
of flash memory cells (not shown) and supporting analog
access circuitry (not shown). For another embodiment, the
memory cells are floating-gate field-effect transistors, and the
supporting access circuitry includes voltage generators for
generating voltages, e.g., for programming or erasing the
memory cells, various sets of fuses, etc. The memory system
has been simplified to focus on features of the memory that
are helpful in understanding the invention.

Command user interface 106 decodes signals (or user com-
mands) provided on one or more control lines 108 from
command processor 104. Command user interface 106 gen-
erates control signals based on the user commands and sends
these control signals to micro-programmable controller 110

US 9,128,894 B2

3

via control line 112. For one embodiment, these control sig-
nals include a run signal (or command) 113 that can include
an algorithm command (or signal) that causes micro-pro-
grammable controller 110 to perform various algorithms,
e.g., for performing program, program-verify, erase, or com-
paction (recovery of over-erased cells) operations on the
memory cells. For another embodiment, when the algorithm
is completed, micro-programmable controller 110 sends a
DONE signal to command user interface 106 that informs
command user interface 106, for example, that an algorithm
running on micro-programmable controller 110 has finished
and that another run signal 113 can be sent. For some embodi-
ments, the DONE signal indicates whether a particular opera-
tion performed by micro-programmable controller 110, such
as a program, erase, or compaction operation, has been suc-
cessful or not.

For some embodiments, the user commands instruct com-
mand user interface 106 to send a suspend command (or
signal) 121 to micro-programmable controller 110 via control
line 127 for suspending execution of a currently running
algorithm. For one embodiment, execution is suspended for
changing the voltage levels being applied to a memory cell of
analog/memory core 116, such as changing from a read volt-
age to a programming voltage or vice versa. Signals may also
be sent from command user interface 106 to command pro-
cessor 104 over line 122 for monitoring operation of memory
device 102. For one embodiment, these signals include infor-
mation about the status of memory device 102, such as
whether memory device 102 is available for read, busy, e.g.,
running an algorithm, an algorithm is suspended, etc.

For one embodiment, algorithms of micro-programmable
controller 110 control timing of actuator (or control) signals
sent to analog/memory core 116 of flash memory device 102
via control line 118. For some embodiments, the actuator
signals include addresses of memory cells of analog/memory
core 116. For other embodiments, micro-programmable con-
troller 110 generates the addresses. For one embodiment, the
control signals tell analog/memory core 116 which operation
(or mode), such as a program, an erase, a compaction, a
program-verify, etc., will be executed. This causes analog/
memory core 116 to switch various circuits to the correspond-
ing mode. For one embodiment, the control signals cause one
or more voltage circuits to send voltages, e.g., programming
voltages, soft-programming voltages, program-verify volt-
ages, etc., for the corresponding mode to the memory cells.
For example, control signals may instruct analog circuitry of
analog/memory core 116 to apply a programming voltage,
soft-programming voltage, program-verify voltage, etc. to
the memory cells. For another embodiment, the control sig-
nals are transmitted over control line 114 and include the
DONE signal.

For another embodiment, feedback signals are sent from
analog/memory core 116 over a feedback line 120, e.g., to
inform micro-programmable controller 110 whether the
memory cells are programmed, erased, need reprogramming,
etc. For some embodiments, the feedback signals are sent in
response to inquiries sent from micro-programmable control-
ler 110 to analog/memory core 116, e.g., via control lines 118.

FIG. 2 is a block diagram of micro-programmable control-
ler 110 according to another embodiment of the present
invention. Micro-programmable controller 110 includes reg-
ister bank (RB) 130 having pages 132, to 132, Each of pages
132 includes registers 134, to 134,,. For one embodiment,
M=8, and for another embodiment, each of registers 134 is a
16-bit register. Each register 134 stores internal processing
states, input signals received at register bank 130, etc. For
some embodiments, the input signals come from various sets

20

25

30

40

45

55

4

of fuses (not shown) of analog/memory core 116 and can
include information about the number of programming
pulses, the voltage level of the programming pulses, duration
of erase or programming cycles, etc. For other embodiments,
the input signals include the feedback signals discussed above
in conjunction with FIG. 1. For one embodiment, the input
signals are received on a bus 135 that for another embodiment
includes four 16-bit buses.

Each register 134 can be accessed in a read or write mode.
For one embodiment, the content of any one of registers 134
can be output on output buses 136, and 136,. For another
embodiment, data, e.g., 16-bit data, can be stored in one of
registers 134 by addressing the page 132 containing the reg-
ister 134 using three bits and addressing the register 134 using
two bits, i.e., using a total of five bits. For some embodiments,
one or more of registers 134 are used to store values of the
actuator signals. Register bank 130 transmits the actuator
signals to analog/memory core 116. For one embodiment, the
actuator signals are output on a bus 138 that for another
embodiment includes four 16-bit buses.

For various embodiments, registers 134 include conven-
tional registers, in which data are stored by setting the regis-
ter, and hardwired registers for receiving the input signals.
Registers 134 also include pulsing registers in which data can
be updated during each operation cycle of micro-program-
mable controller 110.

Output buses 136, and 136, couple register bank 130 to a
bus controller (BC) 142. Bus controller 142 processes data
stored in registers 134 and provides data, e.g., addresses,
instructions, etc., to be loaded in registers 134. A transfer
register (TR) 146 is coupled for input to bus controller 142.
Transfer register 146 is coupled for output to register bank
130 by an input bus 154 that for one embodiment includes
three 16-bit buses. Transfer register 146 synchronizes data to
be stored in registers 134. That is, transfer register 146 sends
the data to registers 134 at a particular time during an oper-
ating cycle of micro-programmable controller 110.

Register bank 130 is coupled to a select register (SELR)
160. For one embodiment, select register 160 selects one of
registers 134 of one of pages 132 of register bank 130 for
register operations, such as data read or write operations.
Select register 160 and bus controller 142 are coupled to a
processor 162. Specifically, select register 160 and bus con-
troller 142 are coupled to an instruction decoder (IDEC) 166
of processor 162. Instruction decoder 166 is coupled to an
instruction register (IR) 172 of processor 162. Instruction
register 172 is coupled to a code-storage device 178, such as
a read only memory (ROM), of processor 162.

For one embodiment, code-storage device 178 includes an
array, e.g., 256 rows by 32 columns, of mask programmable
memory cells, such as erasable cells or any other nonvolatile
memory cell. Code-storage device 178 contains all of the
algorithms of micro-programmable controller 110. These
algorithms cause micro-programmable controller 110 to per-
form program, erase, program-verify, and compaction opera-
tions on analog/memory core 116 as well as other operations.

Instruction register 172 receives an instruction from code-
storage device 178 and stores the instruction, e.g., for one
clock (or operating) cycle of micro-programmable controller
110. Instruction decoder 166 receives the instruction from
instruction register 172 and decodes the instruction. In
response to some instructions, instruction decoder 166 sends
a control signal to select register 160 for causing select reg-
ister 160 to select one of registers 134 of one of pages 132. For
example, a register may be selected to receive input signals
from analog/memory core 116 or for outputting actuator sig-
nals to analog/memory core 116 or command user interface

US 9,128,894 B2

5

106. A register 134 may be selected for sending data to bus
controller 142 or receiving data from bus controller 142. The
input signals and the data from bus controller 142 update or
change the contents of registers 134. For one embodiment,
this updates the actuator signals.

For some embodiments, instruction decoder 166 sends a
control signal to bus controller 142 for causing to bus con-
troller 142 to perform various data processing operations. For
one embodiment, the control signal received at bus controller
142 from instruction decoder 166 includes data. For other
embodiments, bus controller 142 sends the data directly to a
register 134, processes the data and sends the processed data
to aregister 134, combines the data with data received from a
first of registers 134 and sends the combined data to the first
or a second of registers 134, etc.

Instruction decoder 166 is coupled to a program counter
over-rider (PCO) 188 of processor 162. Program counter
over-rider 188 is coupled to a program counter (PC) 194 of
processor 162. Program counter 194 is coupled to code-stor-
age device 178. For one embodiment, program counter over-
rider 188 loads program counter 194 with addresses of code-
storage device 178 in response to instructions received from
instruction decoder 166. For another embodiment, program
counter 194 sends the address to code-storage device 178 and
increments the address by one.

An expression checker (EC) 204 is coupled to processor
162, and more specifically, to instruction decoder 166.
Expression checker (EC) 204 is also coupled to bus controller
142 by a bus 205 for receiving data from bus controller 142.
For one embodiment, bus 205 includes two 16-bit buses. For
another embodiment, expression checker 204 determines
whether the data is all zeros or ones, depending on the type of
check being performed. Expression checker 204 sends a
match signal 206 to instruction decoder 166 indicating a
match when the data is all zeros or all ones, depending on the
type of check. Otherwise, the match signal 206 indicates that
no match has occurred.

Instruction decoder 166 is coupled to an asynchronous
controller interface (ACI) 214. Asynchronous controller
interface 214 is coupled to command user interface 106.
Asynchronous controller interface 214 receives commands
from command user interface 106, such as run command 113,
e.g., including an algorithm signal (or command). Asynchro-
nous controller interface 214 can also receive suspend signal
(or command) 121 from command processor 104 through
command user interface 106 that requests the interrupt of the
current operation during algorithm execution by the micro-
programmable controller 110. Asynchronous controller inter-
face 214 can receive a halt instruction from instruction
decoder 166 when an algorithm is completed. In response to
receiving the halt instruction, asynchronous controller inter-
face 214 sends the DONE signal to command user interface
106. Asynchronous controller interface 214 also transmits
suspend command 121 to instruction decoder 166.

Program counter over-rider 188 is coupled to a starting
address multiplexer (SAM) 230 of processor 162. Starting
address multiplexer 230 is coupled to a starting address table
(SAT) 236 of processor 162 that contains the initial addresses
of all the algorithms stored in code-storage device 178. Start-
ing address multiplexer 230 receives an algorithm command
from command user interface 106. The algorithm command
causes starting address multiplexer 230 to select a starting
address for that algorithm command from starting address
table (SAT) 236.

Starting address multiplexer 230 sends the starting address
to program counter over-rider 188 that loads the starting
address into program counter 194. For one embodiment, pro-

10

15

20

25

30

35

40

45

50

55

60

65

6

gram counter 194 sends the starting address to code-storage
device 178 and increments the starting address by one. For
various embodiments, program counter 194 increments the
current address by one in the absence of program counter
over-rider 188 receiving a signal from instruction decoder
166 or a starting address from starting address multiplexer
230.

Micro-programmable controller 110 includes a clock gen-
erator 156 that for one embodiment has an internal oscillator
and for another embodiment has four phases that constitute
one operating cycle. For one embodiment, program counter
194 receives phase-1 clock signals from clock generator 156
for enabling program counter 194. During phase 1, program
counter 194 is updated and sends an address of code-storage
device 178 to code-storage device 178. For another embodi-
ment, code storage device 178 and register bank 130 receive
phase-2 clock signals from clock generator 156. During phase
2, code-storage device 178 is enabled, and an instruction 244
stored at the address of code-storage device 178 is sent to
instruction register 172 from code-storage device 178. For
one embodiment, the input signals from analog/memory core
116 are sampled and stored in one or more of registers 134
during phase 2. Sampling and storing the input signals during
a particular phase acts to synchronize micro-programmable
controller 110 with the rest of the chip.

Instruction decoder 166, select register 160, transfer regis-
ter 146, and program counter 194 receive a phase-3 clock
signal from clock generator 156. During phase 3, instruction
decoder 166 interprets instruction 244. That is, instruction
decoder 166 causes micro-programmable controller 110 to
perform operations based on instruction 244. For one
embodiment, instruction decoder 166 generates a signal
depending upon the content of instruction 244. For example,
instruction 244 may cause a signal to be sent to select register
160 that causes data to be read from a register 132 of register
bank 130 specified in instruction 244 for output. For example,
the data can be sent to bus controller 142 or to analog memory
core 116. Alternatively, instruction 244 may cause a signal to
be sent to select register 160 that causes data to be loaded into
a register 132, e.g., from bus controller 142. Instruction 244
may cause a data signal to be sent from instruction decoder
166 to bus controller 142. For one embodiment, bus controller
may process the data signal and send it to one of registers 134
for storage. For another embodiment, the data may be com-
bined with data from one of registers 134 and stored in the
same or another of registers 134. Instruction 244 may cause
instruction decoder 166 to send a halt command to asynchro-
nous controller interface 214 when an algorithm is com-
pleted.

Instruction 244 may include alternative instructions. A first
of the alternative instructions may cause instruction decoder
166 to send a control signal to program counter over-rider 188
that causes program counter over-rider 188 to cause program
counter 194 to increment the present address of code-storage
device 178 by one. A second of the alternative instructions
causes instruction decoder 166 to send a control signal to
program counter over-rider 188 that causes program counter
over-rider 188 to cause program counter 194 to be overridden,
e.g., for jumping over a number of addresses of code-storage
device 178 (or of lines of the algorithm) to a jump address
specified in the instruction.

For one embodiment, the first or second alternative is
selected according to the match signal 206 received from
expression checker 204 at instruction decoder 166. When the
match signal 206 indicates that a match has occurred, the
second alternative is selected. When a match does not occur,
the first alternative is selected.

US 9,128,894 B2

7

Register bank 130 receives phase-4 clock signals. During
phase 4, a register 134 addressed by select register 160 is
updated. For one embodiment, this involves sending data that
is processed by bus controller 142 and held in transfer register
146 to the addressed register 134.

FIG. 3 illustrates the register fields for a register 134 of
register bank 130 according to another embodiment of the
present invention. For one embodiment, register 134 has 16
bits. Data stored in register 134 can be accessed by 16 bits (a
word), 8 bits (a byte), or 4 bits (a nibble). For another embodi-
ment, a 16-bit word can be decomposed into an eight-bit high
(or H) byte, e.g., a most significant byte, and an eight-bit low
(or L) byte, e.g., a least significant byte. For one embodiment,
the H-byte includes bits 8-15 of the word and the L-byte bits
0-7. Each byte can be decomposed into a four-bit up (or U)
nibble, e.g., a most significant nibble, and a four-bit down (or
D) nibble, e.g., a least significant nibble. This means the
16-bit word can be decomposed into a high-up (or HU)
nibble, a high-down (or HD) nibble, a low-up (or LU) nibble,
and a low-down (or LD) nibble, as shown in FIG. 3. For
another embodiment, the HU-nibble includes bits 12-15, the
HD-nibble bits 8-11, the LU-nibble bits 4-7, and the LD
nibble bits 0-3.

FIG. 4 illustrates instructions 244, to 244, ; according to
another embodiment of the present invention. Each of the
algorithms stored in code-storage device 178 includes one or
more of instructions 244, e.g., arranged in various sequences
and/or appearing one or more times. The present invention is
not limited to 13 instructions, and in various embodiments,
there can be more or fewer than 13 instructions. For one
embodiment, each of instructions 244 includes 32 bits, e.g.,
numbered from 0 to 31. For another embodiment, bit 30 is not
used, and bit 31 is a suspension flag. For other embodiments,
when bit 31 is set to one (1), the corresponding instruction is
suspendable, i.e., the suspension flag is on. For one embodi-
ment, the flags are predetermined and are fixed.

Each of instructions 244 is distinguished by a bit (or oper-
ating) code 402, which is fixed for one embodiment. Instruc-
tion decoder 166 uses the operating codes 402 to identify the
corresponding instruction. Operating codes 402 include 3t0 9
bits, for one embodiment.

Instructions 244, and 244, are conditional jump (JMP and
JMPN, respectively) instructions each having an expression
406 and a jumping address (jmp addr) 408. For one embodi-
ment, expression 406 includes 19 bits, and jumping address
408 is eight (8) bits. Instructions 244, and 244, cause execu-
tion flow to be changed according to expression 406. For
example, when expression 406 of instruction 244, is true or
expression 406 of instruction 244, is false, the execution flow
jumps to a line (or row) in the algorithm having an address
that matches the specified jumping address 408. When
expression 406 of instruction 244, is false or expression 406
of instruction 244, is true, the execution flow continues at the
next line (or row) in the algorithm.

Specifically, when expression 406 is false, instruction
decoder 166 causes program counter over-rider 188 to cause
program counter 194 to increment the present of address of
code-storage device 178 by one. When expression 406 is true,
instruction decoder 166 causes program counter over-rider
188 to cause program counter 194 to be overridden for a
jumping over a number of addresses of code-storage device
178 to a line of the algorithm corresponding to the specified
jumping address 408. That is, program counter over-rider 188
loads the jumping address 408 into program counter 194. The
jumping address 408 is sent to code-storage device 178,

25

40

45

55

8

where code-storage device 178 responds by jumping to the
line of the algorithm corresponding to the specified jumping
address 408.

FIG. 5 illustrates an expression 406 according to an
embodiment of the present invention. For one embodiment,
expression 406 can be CHKO or CHK 1. For another embodi-
ment, expression 406 includes a three-bit bit code 409, an
eight-bit mask 410, a five-bit register address (reg) 412 for
addressing a register of 134 of register bank 130 (e.g., three
bits for the page 132 containing the register 134 and two for
the register 134), and a bit 413 for specifying the H/L byte of
the register 134 corresponding to the register address 412.

For one embodiment, CHKO is true when the bits of the
addressed byte corresponding to mask 410 are all zeros. Oth-
erwise, CHKO is false. For this embodiment, expression
checker 204 indicates a match when the data received from
bus controller 142 are all zeros.

For another embodiment, CHK1 is true when the bits ofthe
addressed byte corresponding to mask 410 are all ones. Oth-
erwise, CHK1 is false. For this embodiment, expression
checker 204 indicates a match when the data received from
bus controller 142 are all ones.

Instruction 244, is a SET instruction having, for one
embodiment, register address 412 and a 16-bit value 414.
Instruction 244 causes value 414 to be stored in a register 134
corresponding to the register address 412. For one embodi-
ment, value 414 is an initial count used for counting opera-
tions.

Instruction 244, is a set binary (SETB) instruction having,
for one embodiment, register address 412, value 414, and a
1/0flag416. When flag 416 is 0 (zero), only zeros of value 414
are stored in a register 134 corresponding to the register
address 412. When flag 416 is 1 (one), only ones of value 414
are stored in the register 134 corresponding to the register
address 412. The other bits of the register 134 are left as they
are.

Instruction 244, is a set masked by eight (SETMS8) instruc-
tion having, for one embodiment, register address 412, an
eight-bit value 418, mask 410, and bit 413. Instruction 244,
causes some of the bits of the addressed byte to be masked and
others to be unmasked and causes each unmasked bit to be set
to the value of a respective one of the bits of value 418.

Instruction 244 is a transfer (SETX) instruction having,
for one embodiment, a five-bit source register address (source
reg) 422 and a five-bit target register address (target reg) 424.
Instruction 244 causes four, eight, or 16 bits of a register 134
having source register address 422 (e.g., a source register
134) to be loaded into a register 134 having target register
address 424 (e.g., a target register 134). For some embodi-
ments, instruction 244, also includes fields for specifying
bytes and nibbles of source register 134 and target register
134. HL.1 and UD1in FIG. 4 respectively correspond to a byte
and a nibble of source register 134, and HL.2 and UD2 respec-
tively correspond to a byte and a nibble of target register 134.
Field X4 causes the nibble UD1 (or four bits) of source
register 134 to be loaded in nibble UD2 of target register 134.
Field X8 causes the byte HL.1 (or 8 bits) of source register 134
to be loaded in byte HL.2 of target register 134.

Instruction 244, is a return (RET) instruction having, for
one embodiment, register address 412 and bit 413. Instruction
244, causes code-storage device 178 to jump to a line within
the algorithm whose address is contained in the register
address 412.

Instruction 244, is a CALL instruction having, for one
embodiment, register address 412, bit 413, jump address 408,
and an eight-bit return address 426. Instruction 244 causes
return address 426 to be stored in the addressed byte (i.e., the

US 9,128,894 B2

9

H/L byte) of a register 134 having register address 412 and
causes the execution flow to jump to a location of code-
storage device 178 corresponding to jump address 408.

Instruction 244, is an absolute jump (AJMP) instruction
having for one embodiment jump address 408. Instruction
244, causes the execution flow to jump to a location of code-
storage device 178 corresponding to jump address 408. Spe-
cifically, program counter over-rider 188 loads the jumping
address 408 into program counter 194. The jumping address
408 is sent to code-storage device 178, where code-storage
device 178 responds by jumping to the line of the algorithm
corresponding to the specified jumping address 408.

Instructions 244,, and 244,, are jumps with decrement
(DJMP and DIMPN, respectively) instructions having, for
one embodiment, register address 412 and jump address 408.
Instructions 244,, and 244, cause the value of the word,
byte, or nibble of the register 134 having register address 412
to be decremented, e.g., by one. Instruction 244, causes
execution flow to jump to a location of code-storage device
178 corresponding to jump address 408 if the result of the
decrement is zero. Otherwise, the execution continues at the
next location in the algorithm. Instruction 244, causes
execution flow to jump to a location of code-storage device
178 corresponding to jump address 408 if the result of the
decrement is not zero. Otherwise, the execution continues at
the next location in the algorithm. HL. and UD respectively
correspond to a byte and a nibble of the register 134 having
register address 412. Field X4 specifies a nibble (4 bits) to be
decremented. Field X8 specifies that a byte (8 bits) to be
decremented. For various embodiments, instructions 244,
and 244, are used for counting operations. HL. selects,
depending on its value, the higher or lower byte. UD selects,
depending on its value, the higher or lower nibble.

Instructions 244, , and 244 ; are respectively no operation
(NOP) and HALT instructions. For one embodiment, instruc-
tions 244, and 244, ; each has a bit 428 that has a value of 0
(zero) for instruction 244, , and a value of 1 (one) for instruc-
tion 244, ;. For another embodiment, bit 428 is the zeroth
numbered bit of the 32 bits. Instruction 244, , causes program
counter 194 to be incremented by one, whereas instruction
244, ; causes execution flow to stop.

FIG. 6 is a block diagram of bus controller 142 according to
another embodiment of the present invention. For one
embodiment, bus controller 142 is a combinatorial logic cir-
cuit. Bus controller 142 can process data stored in registers
134 of register bank 130 and can provide data to be loaded
into registers 134.

For various embodiments, bus controller 142 includes a
displacer 600. For one embodiment, displacer 600 receives
data 602 from a register 134, e.g., via output bus 136,, and
outputs data 604. Displacer 600 can displace data of 602
contained in one byte or nibble of the data field to another byte
or nibble of the data field, e.g., for multiplying or dividing the
data. For example, with reference to F1G. 3, data contained in
the L byte can be displaced to the H byte and vice versa.
Displacer 600 can also pass data 602 without performing any
operations on data 602, e.g., without displacing any data.

An arithmetic logic unit (ALU) 606 receives data 604 from
displacer 600. Arithmetic logic unit 606 can also receive data
608 from instruction decoder 166. For one embodiment, data
608 includes value 414 or value 418 of the respective instruc-
tions 244 of FIG. 4. For another embodiment, arithmetic logic
unit 606 decrements data, performs logical AND and/or OR
operations on data, masks data, etc. Arithmetic logic unit 606
may perform operations on either data 604 or 608, such as
masking and/or decrementing, or perform operations on data

5

10

15

20

25

30

40

45

50

55

60

65

10
604 and 608 together, such as ANDing or ORing data 604 and
608, masking and/or decrementing the result of the ANDing
or ORing, etc.

Arithmetic logic unit 606 sends data 610, to 610, to a
multiplexer 612. For one embodiment, data 610, to 610, are
the result of different processing operations performed by
arithmetic logic unit 606. Multiplexer 612 selects one of data
610, to 610,, represented by data 614, and sends the data 614
to multiplexer 616 and/or multiplexer 618.

A multiplexer 620 receives data 622 and 624 from instruc-
tion decoder 166. For one embodiment, data 622 is the data
contained in bits 8-15 of value 414 the respective instruction
of FIG. 4, and data 624 is the data contained in bits 0-7 of the
value 414. In response to an instruction received from instruc-
tion decoder 166, multiplexer 620 selects either data 622 or
624, represented by data 626, and sends the data 626 to
multiplexer 618. For one embodiment, multiplexer 618 also
receives data 614 from displacer 600. For another embodi-
ment, multiplexer 616 receives data 614 from displacer 600
and data 608 from instruction decoder 166. In response to an
instruction received from instruction decoder 166, multi-
plexer 616 selects one of data 604, 608, and, 614, represented
by data 628, and sends data 628 to a replacer 630. Multiplexer
618 selects one of data 604, 614, and 626, represented by data
632, and sends data 632 to replacer 630 in response to an
instruction received from instruction decoder 166. For
another embodiment, data 628 or data 632 is sent to replacer
630.

A multiplexer 634 receives data 602 and data 636 from
different registers 134, e.g., respectively via output buses
136, and 136,. Multiplexer 634 selects one of data 602 and
636, represented by data 638, and sends data 638 to replacer
630 in response to an instruction received from instruction
decoder 166. Replacer 630 outputs data 640 and/or performs
operations on data 640 in response to instructions received
from instruction decoder 166. For one embodiment, replacer
passes data 628, 632, or 638 as is, e.g., without performing
any operations on the respective data. For another embodi-
ment, replacer 630 creates data 640, for example, using
nibbles from data 628 and 638, from data 628 and 632, from
data 632 and 638, or from data 628, 632, and 638. Replacer
640 sends data 640 to one of registers 134 via input bus 154.

For one embodiment, asynchronous controller interface
214 includes a suspension controller 700, illustrated in FIG.
7. Suspension controller 700 acts to synchronize suspend
command 121, which is asynchronous with respect to clock
generator 156. Suspend command 121 is asynchronous in that
it can be received at micro-programmable controller 110 at
anytime, i.e., during any phase of clock generator 156. How-
ever, for various embodiments, it is desirable that the suspend
command 121 is executed during a particular phase of clock
generator 156.

Suspend command 121 is received at a latch 702, such as a
D-latch, of suspension controller 700. Suspend command 121
is held in latch 702 as long as run command 113 is active. For
one embodiment, suspend command 121 is held in latch 702
because subsequent user commands can cause suspend com-
mand 121 to be erased if suspend command 121 is not held in
latch 702. When a signal 706, such as a phase 2 signal of clock
generator 156, is received at a latch 704, such as a D-latch,
suspend command 121 is sent to an AND gate 708.

When signal 710 is logic high at AND gate 708, suspend
command 121 is sent to an AND gate 712. For one embodi-
ment, signal 710 is sent when the suspension flag of an
instruction 244 that is addressed is on, i.e., bit 31 of the
addressed instruction is set to one (1). This means that sus-
pend command 121 is held until a suspendable instruction

US 9,128,894 B2

11

244 is addressed. When a signal 714, such as a phase-3 signal
of clock generator 156, is logic high at AND gate 712, sus-
pend command 121 is sent to a latch 716, such as a D-latch.
Suspend command 121 is then sent from latch 716 to instruc-
tion decoder 166 for interpretation and execution. For one
embodiment, latch 716 enables suspend command 121 to be
removed (or disabled) by resetting latch 716. For other
embodiments, latches 702, 704, and 716 are reset substan-
tially simultaneously in response to a reset signal.

For one embodiment, micro-programmable controller 110
operates as a counter as follows: During phase 1 of clock
generator 156, program counter 194 sends an address to code
storage device 178, where the address corresponds to a line of
an algorithm of code storage device 178 that contains a first
instruction having an initial count, such as value 414 of
instruction 244, of FIG. 4. Then, program counter 194 is
incremented by one. During phase 2 of clock generator 156,
code storage device 178 sends the first instruction to instruc-
tion register 172, where the first instruction is held until phase
3 of clock generator 156. During phase 3, the first instruction
is sent to instruction decoder 166. Instruction decoder 166
interprets the first instruction and sends a first signal to select
register 160, where the first signal corresponds to an address
of'a first register 134 in which the initial count will be stored.
Upon receiving the first signal, select register selects the first
register 134. Instruction decoder 166 also sends a second
signal to bus controller 142, where the second signal corre-
sponds to the initial count. Bus controller 142 sends the initial
count to transfer register 146. During phase 4 of clock gen-
erator 156, transfer register 146 sends the initial count to the
first register 134. This completes one operating cycle (e.g.,
including the four phases) of micro-programmable controller
110.

During phase 1 of the next operating cycle, program
counter 194 sends an address corresponding to a line of the
algorithm of code storage device 178 that contains a second
instruction for decrementing the initial count by one, such as
instruction 244, of FIG. 4. Then, program counter 194 is
incremented by one. During phase 2, code storage device 178
sends the second instruction to instruction register 172, where
the second instruction is held until phase 3. During phase 3,
the second instruction is sent to instruction decoder 166.
Instruction decoder 166 interprets the second instruction and
sends a third signal to select register 160, where the third
signal corresponds to the address of the first register 134 in
which the initial count is stored. Upon receiving the third
signal, select register 160 selects the first register 134 and the
initial count is sent to bus controller 142. Instruction decoder
166 also sends a fourth signal to bus controller 142 that causes
bus controller 142 to decrement the initial count by one to
form a second count. Bus controller 142 sends the second
count to transfer register 146 and to expression checker 204.

Expression checker 204, for one embodiment, compares
the second count to zero. When the second count is zero,
expression checker 204 sends a first match signal, indicative
of'a match, to expression decoder 166. In response to receiv-
ing the first match signal, expression decoder 166 sends a fifth
signal, corresponding to a jump address included in the sec-
ond instruction, to over-rider 188. For various embodiments,
the jump address corresponds to a line of the algorithm of
code storage device 178 that terminates counting. Transfer
register 146 then sends the second count to the first register
134 or a second register 134 during phase 4. When the second
count is not zero, transfer register 146 sends the second count
to the first register 134 or the second register 134 during phase
4, and the above process repeats until the count is zero.

10

15

20

25

30

35

40

45

50

55

60

65

12

For some embodiments, an actuator signal is sent, e.g.,
from a third register 134, to analog/memory core 116 during
each operating cycle, e.g., during phase 3 before the second
count is sent to the first or second register. For one embodi-
ment, the initial count corresponds to a number of voltage
pulses to be applied to the memory cells, and the actuator
causes one or more voltage circuits of analog/memory core
116 to send the voltage pulse to the memory cells. In this way,
micro-programmable controller 110 acts as a pulse counter.

For another embodiment, the above counting method is
used as an address counter for selecting and keeping track of
addresses of analog/memory core 116, e.g. addresses of indi-
vidual memory cells, rows of an array of the memory cells,
etc. In this embodiment, an actuator signal containing an
address of analog/memory core 116 is sent, e.g., from a third
register 134, during each operating cycle to analog/memory
core 116, e.g., during phase 3 before the second count is sent
to the first or second register. During each operating cycle, the
address is incremented. For one embodiment, the address is
incremented by sending the address from one of registers 134
to bus controller 142. Bus controller 142 increments the
address and sends the incremented address to the same or
another one of registers 134.

Itis apparent that the initial count corresponds to a number
of cycles executed by micro-programmable controller 110.
Moreover, each cycle is executed during a cycle time. There-
fore, the initial count can correspond to a time, e.g., the time
it takes to execute the number of operating cycles correspond-
ing to the initial count. For one embodiment, at a start of a
count, an actuator signal is sent, e.g., from a third register 134,
to analog/memory core 116 for activating a voltage pulse in
the memory core. Atthe end of the count, e.g., when the initial
count is counted down to zero, another actuator signal is sent,
e.g., from a fourth register 134, to analog/memory core 116
for deactivating the voltage pulse. In this way, the voltage
pulse is applied for the time it takes to execute the number of
operating cycles corresponding to the initial count and thus
micro-programmable controller 110 can be used as a pulse
duration counter.

CONCLUSION

Although specific embodiments have been illustrated and
described herein, it will be appreciated by those of ordinary
skill in the art that any arrangement that is calculated to
achieve the same purpose may be substituted for the specific
embodiments shown. Many adaptations of the invention will
be apparent to those of ordinary skill in the art. Accordingly,
this application is intended to cover any adaptations or varia-
tions ofthe invention. It is manifestly intended that this inven-
tion be limited only by the following claims and equivalents
thereof.

What is claimed is:

1. A bus controller, comprising:

a displacer configured to displace data contained in one
data field to another data field;

an arithmetic logic unit coupled to the displacer;

a first multiplexer coupled to a plurality of outputs of the
arithmetic logic unit that are a result of different pro-
cessing operations performed by the arithmetic logic
unit;

a second multiplexer configured to select between data
received at inputs to the second multiplexer from an
instruction decoder for output from the second multi-
plexer;

US 9,128,894 B2

13

athird multiplexer configured to select between data output
from the first multiplexer and the output from the second
multiplexer for output from the third multiplexer; and

a replacer coupled to receive the output from the third
multiplexer.

2. The bus controller of claim 1, wherein the displacer is
configured to receive data and to pass that data without per-
forming any operations on the data or to displace data con-
tained in one portion of a received data field to another portion
of the received data field.

3. The bus controller of claim 1, wherein the arithmetic
logic unit is configured to perform operations selected from
the group consisting of changing data, performing logical
operations on data, and masking data.

4. The bus controller of claim 1, wherein the arithmetic
logic unit is configured to receive data from the displacer
and/or other data from the instruction decoder and to perform
operations on the data from the displacer or the other data
from the instruction decoder or to perform operations on a
combination of the data from the displacer and the other data
from the instruction decoder.

5. The bus controller of claim 4, wherein the arithmetic
logic unit is further configured to mask and/or change a result
of the operations performed on the combination of the data
from the displacer and the other data from the instruction
decoder.

6. The bus controller of claim 4, wherein the operations on
the combination of the data from the displacer and the other
data from the instruction decoder comprise ANDing or
ORing operations.

7. The bus controller of claim 6, wherein the arithmetic
logic unitis configured to mask and/or decrement the result of
the ANDing or ORing operations.

8. The bus controller of claim 1, wherein the replacer is
configured to send data to a register without that data being
sent from the replacer to the arithmetic logic unit before being
sent to the register.

9. The bus controller of claim 1, wherein the replacer is
configured to create data from a combination of the output
from the third multiplexer and data received from a fourth
multiplexer.

10. The bus controller of claim 1, wherein the replacer is
configured to perform operations on the output from the third
multiplexer in response to instructions from the instruction
decoder.

11. The bus controller of claim 1, wherein the displacer is
configured to displace data from a most significant byte to a
least significant byte of a word received at the displacer.

12. A bus controller, comprising:

a displacer configured to displace data contained in one

data field to another data field;

an arithmetic logic unit coupled to an output of the dis-
placer;

a first multiplexer coupled to a plurality of outputs of the
arithmetic logic unit that are a result of different pro-
cessing operations performed by the arithmetic logic
unit;

15

20

30

35

40

45

50

55

14

second and third multiplexers coupled to an output of the
first multiplexer; and

a replacer coupled to an output of the second multiplexer
and an output of the third multiplexer;

wherein the replacer is configured to send data to a register
without that data being sent from the replacer to the
arithmetic logic unit before being sent to the transfer
register.

13. The bus controller of claim 12, wherein the plurality of
outputs of the arithmetic logic unit output data are a result of
different processing operations performed by the arithmetic
logic unit.

14. The bus controller of claim 12, further comprising a
fourth multiplexer coupled to an input of the third multiplexer
and configured to receive data inputs from an instruction
decoder.

15. The bus controller of claim 12, further comprising a
fourth multiplexer coupled to the replacer and configured to
receive inputs from externally of the bus controller.

16. The bus controller of claim 15, wherein the replacer is
configured to create data by combining data inputs from at
least one of the second and third multiplexers and the fourth
multiplexer.

17. A bus controller, comprising:

a displacer configured to displace data contained in one

data field to another data field;

an arithmetic logic unit coupled to the displacer and con-
figured to receive an output from the displacer and con-
figured to receive first data from an instruction decoder;

a first multiplexer coupled to the arithmetic logic unit and
configured to select between outputs of the arithmetic
logic unit that are a result of different processing opera-
tions performed by the arithmetic logic unit;

second and third multiplexers each configured to receive an
output from the first multiplexer;

a replacer configured to receive an output from the second
multiplexer and an output from the third multiplexer;

a fourth multiplexer configured to select between second
and third data respectively received at two inputs to the
fourth multiplexer from the instruction decoder for out-
put from the fourth multiplexer, wherein the second
multiplexer is further configured to receive the output
from the fourth multiplexer; and

a fifth multiplexer configured to select between two inputs
to the fifth multiplexer from externally of the bus con-
troller for output to the replacer.

18. The bus controller of claim 17, wherein the displacer is

configured to receive one of the inputs to the fifth multiplexer.

19. The bus controller of claim 17, wherein the second
multiplexer and the third multiplexer are configured to
receive the output from the displacer.

20. The bus controller of claim 17, wherein the third mul-
tiplexer is configured to receive the first data from the instruc-
tion decoder.

